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Jauch—Piron Logics with Finiteness Conditions
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We show that there are no non-Boolean block-finite orthomodular posets possess-
ing a unital set of Jauch-Piron states. Thus, an orthomodular poset representing
a quantum physical system must have infinitely many blocks.

1. INTRODUCTION AND PRELIMINARIES

An event structure (so-called “quantum logic”) of a quantum
mechanical system is commonly assumed to be an orthomodular poset L.
A state of such a system is then interpreted as a probability measure on L.
It turns out that the orthomodular posets which may potentially serve as
“logics” must have reasonably rich spaces of states. Moreover, the following
condition on the state space appears among the axioms of a quantum
system: if @ is a state on a logic L, and ®(a) =®(b) =1 for some a, be L,
then there is a ¢ € L such that ¢ =< aq, ¢ < b, and ®(c¢) = 1. Such a state is said
to be a Jauch-Piron state. If all states on L fulfil this condition, then L is
called a Jauch-Piron logic. The condition was originally introduced by
Jauch (1968) and Piron (1976).

We investigate unital Jauch-Piron logics with finitely many blocks
(maximal Boolean subalgebras). We show that such a logic is always
Boolean, i.e., it represents a purely classical system. In other words, an
orthomodular poset must have infinitely many blocks in order to describe
a (nonclassical) quantum system.

This generalizes the result of Riittimann (1977) concerning finite Jauch-
Piron orthomodular lattices, and the result of Bunce et al. (1985) for finite
Jauch-Piron logics (not necessarily lattices). On the other hand, there is a
non-Boolean unital Jauch-Piron logic whose blocks are finite (moreover,
uniformly bounded)—consider the set of all projections on a Hilbert space
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of dimension three. Thus, the theorem of Riittimann cannot be weakened
in this direction.

Let us start by reviewing basis notions and facts [see, ¢.g., Kalmbach
(1984) and Ptak and Pulmannova (1989) for details].

Definition 1.1. A logic is a partially ordered set L with a least and a
greatest element 0, 1 together with an operation’ (an orthocomplementation)
such that the following conditions are satisfied for any a, b € L (the symbols
v, A mean the lattice operations induced by =<):

(i) (@)Y =a
(i) a=b implies b'<a'.

(iii) ava'=1.

(iv) If a=b’, then a v b exists in L.

(v) If a<b, then b=av (a' A b) (the orthomodular law).

Definition 1.2. Let a and b bein alogic L. They are said to be orthogonal
(in symbols, a Lb) if a=b’, and they are said to be compatible (in symbols,
aeb)if a=cve and b=d v e, where ¢, d, e L are mutually orthogonal.
An element a € L is called central if a is compatible with every be L. The
set of all central elements of L is called the center of L and will be denoted
by C(L).If C(L)=1{0, 1}, we say that L has atrivial center. Leta,be L, a<b.
Then the interval [a, b], in L is defined as [a, b], ={xe L|a=x=b}. (The
subscript is omitted if this does not cause any misunderstanding.)

It is a well-known fact (Ptik and Pulmannova, 1989) that a logic L is
a Boolean algebra if and only if every pair of its elements is compatible.

Definition 1.3. A block of a logic L is a maximal Boolean subalgebra
of L. Alogic L is said to be block-finite if the system of all blocks of L is finite.

Block-finite logics were thoroughly studied by Bruns and Greechie
(1982a,b).

Definition 1.4. Let K, L be logics and let f: K > L be a mapping. Then
[ is called a logic morphism if the following conditions hold true:
(i) f(0)=0.
(ii) f(a')=f(a) for any aec K.
(iii) f(av b)=f(a)v f(b) whenever a, b€ K are orthogonal.

Definition 1.5. A state on a logic L is a mapping ®: L (0, 1) such that:
(i) ®(1)=1. '
(ii) If a, be L and alb, then ®(av b)=D(a)+D(b).

Let us denote by (L) the set of all states on L (called the “‘state space™).
The set (L) is naturally endowed with a topological and convex
structure (as a subset of (0, 1)"). In fact, we have the following result.
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Proposition 1.6 (see Shultz, 1974). State spaces are {(up to affine homeo-
morphisms) exactly compact convex subsets in locally convex topological
linear spaces.

We shall need the following simple property of state spaces described
first by Godowski (1982).

Proposition 1.7. Let K, L be logics and f: K - L a logic morphism.

(i) If ¥ e #(L), then ¥ofe F(K).

(ii) Suppose further that f(a)< f(b) implies a< b. If e ¥(K) such
that ®(x) =0 whenever f(x) =0, then the mapping ¥: L~ (0, 1) defined by
V(f(a))=®(a) is a state on L.

Proof. (i)LetWe P(L)and put® =V f Now (1) =F(f(1))=¥(1)=

1.If a, be K, alb, then f(a)Lf(b) and
®(avb)=Y(flavb))=Y(f(a)vf(b))
=W(f(a))+¥(f(b))=D(a)+D(b)

Hence ® € #(K). (i) First we must prove that W is properly defined. Let
a, b e K suchthat f(a) = f(b). Then a < b and there are mutually orthogonal
elements ¢, d, e K such that a=cve b=dve Now f(c), f(d), f(e) are
mutually orthogonal elements in L and f(c)v f(e)=f(a)=f(b)=f(d)v
f(e). Hence f(c)=0=f(d), ®(c)=0=®(d), and ®(a) = P(e) = D(b). Now
we can show that ¥ is a state on L. We have V(1) =P(f(1))=®(1)=1.
Let f(a), f(b) € L such that f(a)Lf(b). Then a<>b, flarb)=0, f(arb')=
f(a), and f{a'an b)=f(b). Since (arb')L(a’Ab), we get

V(fla)vf(b))=F(flanb)vfla' rb))=¥(f((anb)v(a'rb)))
=@((anb)v(a’' ab))y=P(anb)+®(a’rb)
=V(flanb))+¥(fla'ab))=¥(f(a))+¥(f(b)) W

2. BLOCK-FINITE LOGICS

In this section we introduce our notation for block-finite logics and
prove some helpful lemmas.

Let L be a block-finite logic. Let 8 ={B,, B,, ..., B,} be the set of all
blocks of L. Denote 8(L)={C=A,nA,n --- nA,|A,=B;orA;=L-B,
fori=1,2,...,n}. Then C(L)e (L) and each x € L is an element of just
one set of €(L). For each C< &(L) put

De={xeCl(yeL y#0,y=x)=yeC}
We call a (finite or infinite) sequence a,=a,=a;=- - - in L down-changing
if a;e C[Ce &(L)] implies a;,,# C foreachi=1,2,3,.... Foreverybe L
we denote E,={geL|g<b and ge UcegwyDc}. We call the elements of
E, botiom elements (for b).
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Lemma 2.1. Let L be a block-finite logic, a, b, x€ L, a, be C for some
Ce &(L). Then x<>q if and only if x< b.
The proof of Lemma 2.1 is straightforward.

Lemma 2.2. The set D¢, forms an ideal, i.e.:

(i) f xe D¢y, yeL,y=x, then ye D¢(y,y.

(ii) If x, ye Dcry, then x vy € Dey,y.

Proof. Part (i} is guaranteed by the definition. (ii) If x, y € D¢(y,, then
x vy exists and belongs to C(L). Let ze L, z<xvy Weput z;,=zAX, z,=
zAy AX'. Now z;, z,€ D¢(py and thus z=z, v z, is a central element. WM

Lemma 2.3. Let L be a block-finite logic. Then each down-changing
sequence in L is finite.

Proof. Suppose, in contradiction, that there is an infinite down-
changing sequence a,=a,=a;=- - in L. Then there are C,, Cgc €(L)
such that each of them contains an infinite subsequence of g, = a, = a;=- - -.
Take a subsequence b, =b,=b;=---of qy=a,=a;=- - - such that by,_, €
C,, bye Cg for k=1,2,3,.... There are blocks B,, B; in L such that
B.,NC,=J,B;nC,=C,, B, Cy= Cz= By Cg (if necessary, we inter-
change the roles of C, and C;). Now Navara and Rogalewicz (1991),
Proposition 5.7 implies that the following blocks exist in L:

B, =10, b,]s, x[0, b3]5,,
B,=[0, b,1s, %[0, bi]s,,
Bs=[0, bels, X [0, bils,, etc.
We have b,;_;# B,, for k=i and b,;_;€ B,, for k<i Thus, we have

constructed an infinite sequence of different blocks in L, which is in a
contradiction with its block-finiteness. W

Corollary 2.4. et L be a block-finite logic. If be L, b # 0, then there
is a bottom element c€ E,, ¢ #0.

3. JAUCH-PIRON LOGICS

Definition 3.1. A state ® on a logic L is said to be a Jauch- Piron state
if the following implication is satisfied: if ®(a) =1=®(b) for a, be L, then
there is c€ L such that c=a, c=b, and (c)=1.

Definition 3.2. (i) A logic L is called a Jauch-Piron logic if every state
on L is a Jauch-Piron state.

(ii) A logic L is said to be unital if, for each ae L, a #0, there is a
de F(L) with ®(a)=1.

The following three theorems belong to the main results of Bunce et
al. (1985), where the proofs can be found. Let us only notice that Theorem
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3.3 is an easy consequence of Proposition 1.7, and the proof of Theorem
3.4 follows immediately from the description of states on a product of logics
(Matiasova and Ptik, 1981). The proof of Theorem 3.5 is quite nontrivial.
The geometry of the state space (its convex structure) is widely utilized.
The theorem was first proved by Riittimann (1977) for logics which are
lattices, and then generalized for all finite logics (and a little simplified) in
Bunce et al. (1985).

Theorem 3.3. Let f be a logic morphism of K onto L, where X is a
Jauch~Piron logic. Then L is also a Jauch-Piron logic.

Theorem 3.4. Let {L,|a I} be a family of (unital) logics. Let I be a
set whose cardinal is not real-measurable. Then L=[].,.; L, is a (unital)
Jauch-Piron logic if and only if L, is a (unital}) Jauch-Piron logic for
every a € L

Theorem 3.5. Let L be a finite unital Jauch-Piron logic. Then L is a
Boolean algebra.
Now we are ready to prove our main result. We start with a lemma.

Lemma 3.6. Let L be a block-finite unital Jauch-Piron logic, ae L.
Then all bottom elements for a are central.

Proof. We divide the proof into two steps. First, we prove that the
assumptions of the theorem imply that card D=1 for all Ce &(L),
C # C(L). Second, we shall prove that D, = & if C # C(L). Before starting
with Step 1, let us notice a tiny observation: If C,, C,e €(L), C,# C,, and
c<>d for some ce Dc,, d € Dc,, then c1d. This follows from the fact that
for e=cnd we have e<c e=d, and thus either e=0 or e€ D¢, N Dc,.
Since D¢, N De, =, we get cLd.

Step 1. Suppose that there is C,€ €(L), C,# C(L), and a,be D,
a# b. We can assume a lb. (Since a, be C,, we have a<>b. Let us write
a=cveb=dveforcdecL, cld cle die Now c=a, d=b, e<b,
and a, be D, which implies that ¢, d, e D, . At least two of them are
different from zero and we take them for a, b.) Then there exists de L,
d<a,de D, for some C, e €(L).

The proof of this seems to require the compactness of the state space
(Proposition 1.6). Since C, # C(L), there exists d € L, d ¢ a. We denote C;
the class in &(L) containing d. Due to Lemma 2.3, we can assume that d
is chosen such that u <> a for every u=d, u & C;. Suppose that d is not a
bottom element. For each C € €(L) we denote A~ = E; n C. We shall show
that for each Ce &(L) there is ¥ e ¥(L) such that ¥(d)=1, ¥(a)=0,
and ¥(u)=0 whenever uec A.. For every uc A- we denote ¥,(L)=
{PeF(L)|®(u)=0, ®(a)=0, ®(d)=1}. Since u=d, u+#d, there exists
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ve E;,viu, and because v¢ C, and v<>a, also vlia. If ®(v)=1, then
de &, (L). Thus, ¥,(L) is a nonvoid closed subset of the compact space
F(L). If uyve Ac, then uvve Ac and &, ,(LYC F. (L)~ %, (L). Hence
(MNuca. Fu(L) #D. This proves the existence of V.

We construct such a state for each C € &(L) with Ac # &, and denote
them ¥,,¥,,...,¥,. Now let ¥=(1/p) ¥.7., ¥;. We have ¥(a')=1 and
V(d)=1.Ifu=d ug C;, thenthereis ve E;, v=d anu’. We have ¥;(v) =0
for some i€{1,2,..., p}, and therefore ¥(v)=(p—1)/p. By the Jauch-
Piron property, there exists e € L such that e<d, e<a’, and ¥(e)=1. Since
a' <> d, it follows that e £ C,;. This is a contradiction with the former result.
Thus, d is a bottom element, i.e., d € Dc,.

Recall that we have a,be D, alb,and d€ D, d 5> a. Let @€ F(L)
such that ®(d)=1. Denote ®(a)=A, ®(b)= B. We have A, B£{0, 1}. [If
®(a)=1, then, from the Jauch-Piron property, there is x€ L such that
x=a,x=d, and ®(x)=1. On the other hand, a€ D, de Dc,, C,# Cy,
and hence the only element under a and d is 0—a contradiction. A similar
argument can be repeated for a’, b, and b'.] Define a mapping ¥: L (0, 1)
as follows:

(i) If x< a, then ¥(x) = d(x).

@ii) If x<a, then x=x,vx,vXx, for x,<a, x,=<b, x;<(avb), and

we put

V(0 =00+ 22 ()

We claim that ¥ is a state on L. Since ¥(1)=1, we must prove that
Y(evg)=T(e)+W¥(g)foranye gec L, elg If e, g, and e v g are all compat-
ible with a, or all noncompatible with a, then this equality is straightforward.
Suppose e<>a, g¢»a. Then either elavb and V(evg)=D(evg)=
(e)+D(g)=V(e)+¥(g), or there is e;<e, e;<av b, e, #0. In that case
e,€D., and as e;<ev g, we get e;<>evg Consequently, evg<e>a and
also g © a, a contradiction. Suppose finally that e v g < a, while e 5 a, g % a.
Then a=evg Indeed, if there is a;=<a,a,#0,a,lev g, then a,le It
follows that a,<>e, and, as a,€ D, also a<s e, inconsistently with the
assumption. We have shown that ¥ is a state on L.

Now we have ¥(d)=1="V(b"). Since d ¢ b’ and also x <5 b’ for every
x=d, x# 0, this is a contradiction with the Jauch-Piron property. We have
proved that card D, =<1 provided C # C(L).

Step 2. Let 9={D.|Ce&(L), card Dc=1}={D,, D,,..., D,}.
Denote by d; the (only) element of D, i=1,2,...,q9, and E=
{d,,d,,...,d,}. Let B={B,, B,, ..., B,} be the set of all blocks of L. For
each B;e & we denote b, = v (B, E). If b, <> b, for k# I, and b, # b;, then
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there is a € E such that a=< b, and alb, (if necessary, we interchange the
roles of b, and b,). By the unitality of L, there exists ® € ¥(L) with ®(a)=1.
For this state we have ®(b,) =1=®(b}), but the only element of L under
both b, and b; is 0-—a contradiction with the Jauch-Piron property. It
follows that b, = b,.

We want to prove that b, =b,="- - - = b,. It suffices to show that b, <> b,
for all i,je{1,2,..., n}. Suppose, in contradiction, that b, < b, for some
k, L Notice that this assumption implies that any lower bound ae L of
{by, b}, ..., b} is different from b} for each i=1,2,...,n Let A be the
set of all lower bounds of {b{, b3,..., b,} in L fulfilling the following
condition: let a, € A and let a, be a lower bound of {b}, b, ..., b,} such
that a,= a,; then {a,, a,} < C for some C € (L). Due to Lemma 2.3, for
each lower bound a, € L of {b}, b5, ..., b,} thereis a,€ A, a,= a,. For each
C e (L) we denote A- = A C. We utilize again the compactness of ¥(L)
to prove that, for each C e (L), there is ¥ € ¥(L) such that ¥(b})=1,
i=1,2,...,n and ¥(c) =0 for every c€ D¢y Ac.

Realize, first, that a' A b+ a’ A b} for each a € A. For each ce D¢y
and ac Ac[C e %(L)] we denote ¥, ,(L)={Pec FP(L)|®(c)=0,P(a)=0,
and ®(b})=1,i=1,2,...,n}. If ce D¢, and a€ A, then there is ¢, €
Dcy, €,#0, ¢;dcv a, and there exists ® e F(L) with ®(c,)=1. We have
be ¥, (L), and thus ¥,_,(L) is a nonvoid closed subset of (L). If ¢,, ¢, €
Dcyand a;, a,€ Ac,then ¢, v c;€ Deqry, a1 v a,€ Ac,and &, ., a,va,(L) C
Fera ()N, a(L). Hence [cayepeyxac Fea(L) # . This proves the
existence of ¥ e P(L) with ¥(b})=1for i=1,2,...,n, and ¥(c)=0 for
every ¢ € De( 0 Ac.

We construct such a state for each C € €(L) with A # &, denote them
v, ¥,,...,¥,, and put ¥=(1/p) ¥ i, ¥,. We have ¥(bj)=1 for j=
1,2,...,n If a;e L is a lower bound of {b], b5,..., b,}, then there is
Ce&(L)and a,€ Ac such that a,=a,. If e {D,, D,,..., D,} is the state
corresponding to C, then ®(a,)=®(a,}) =0 and thus ¥(a;)=(p-1)/p<1.
On the other hand, the Jauch-Piron property implies that there is a ae L
such that a=<b] for each j=1,2,..., n, and ¥(a)= 1—a contradiction.

We proved that b; «> b; foreach i, j€{1, 2, ..., n} and therefore b, = b, =
--+=p, =b. Hence be C(L) and we can write L=[0, b]1x[0, b']. It follows
from Theorem 3.4 that [0, b] and [0, b'] are both Jauch-Piron unital logics.
But [0, b] being finite, it is Boolean by Theorem 3.5. As there are no contral
atoms in [0, b], we have [0, b]={0} and L=[0,5']. M

Theorem 3.7. Let L be a block-finite unital Jauch-Piron logic. Then L
is a Boolean algebra.

Proof. Let us suppose that L is not Boolean. Define a relation ~ on L
as follows: @ ~ b if and only if there are ce L and d, e € D, such that
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a=cvd, b=cv e The relation ~ is obviously symmetric and reflexive. We
show that it is also transitive, and thus ~ is an equivalence on L. Suppose
that a~b and b~ c. There are d,ec L and a,, b,, b,, c;€ D¢z, such that
a=dva,,b=dvbi=evb,,c=evc, Put f=(dArb)va,, g=(ernb)v
c;. We have f,ge D¢, (Lemma 2.2) and a=(dre)vf, c=(dre)vg,
hence a~c.

We denote by P the quotient set L/~. We endow P with the
orthocomplementation and the ordering inherited from L, i.e.,if[a], [b] € P,
then [a]=[b]'([al=[b], resp.) if there are a,, b, € L, a,€[a], b, €[b] with
a, = b} (a, =< b,, resp.). It is a routine procedure to check that P is a logic.
We denote by f the canonical logic morphism from L onto P.

We shall prove that f preserves the relation of compatibility, i.e., if
a,be L, then a<>b (in L) if and only if f(a)<> f(b) (in P). Suppose that
a<b. We can write a=cve, b=dve for c,d,ec L, cld cle,dle We
have f(c) Lf(d), f(c)Lf(e), f(d)Lf(e), and f(a) = f(c) v f(e), f(b) =f(d) v
f(e),ie., f(a) < f(b). To prove the reverse implication, suppose f(a) < f(b).
There are mutually orthogonal elements f{c), f(d), f(e) € P suchthat f(a) =
f(c)yvf(e), f(b)=f(d)v f(e). Further, there are mutually orthogonal ele-
ments ¢, d;, e, € L such that f(c;) =f(c), f(d,) =f(d), and f(e,) = f(e). We

have ¢, v e; <> d, v e;, and, moreover,
(an(eive))vi(a' alcve))viba(dive))
A (b’ A (dl A" 91)) € DC(L)

Hence a< b.

This result ensures that the system &(P) is isomorphic to the system
Z(L). More exactly, f(a), f(b) are both elements of some Cp € €(P) if and
only if a, b are both elements of some C, € €(L). Moreover, if a€ D¢y,
then f(a) =0. Thus, there are no central bottom elements in P.

Now we shall prove that P is unital. Let f(a)e P, f(a)#0. Denote
L,={xeL|f(a)=f(x)}.Letc,d e L,. Weshow that thereisze L,, z< ¢, z=<
d. Suppose first that f(c)=f(a). Then f(¢)=f(d), hence ¢<>d and there
are mutually orthogonal elements ¢,, d,, e Lsuchthatc=c¢,ve, d=d,ve
Now also f(c,)Lf(dy), f(er)Lf(e), f(di)Lf(e), and f(c)=f(c))v f(e),
fld)=f(d,)vf(e). Since f(c)=f(d), we get f(c,)=0. Thus, f(cad)=
fle)=f(a)and cad e L,. Letnow ¢, d € L, be arbitrary. We have crae L,
and f(caa)=f(a); hence also z=(cra)rdeL,.

For every ce L, denote ¥.(L)={®e F(L)|®(c)=1}. Obviously, for
every ce L,, #,(L) is a nonempty closed subset of ¥(L). Further, if ¢;, ¢, €
L., then there is ce L,, c<c¢,, c=¢,;, and ¥ (L) C L (L)N ¥, (L). Due to
the compactness of #(L), there is ® (.., F.(L). Now ®(c) =1 for every
ce L,, particularly ®(a) =1 and ®(x) =1 for every x € L such that f(x)=1.
According to Proposition 1.7, there exists a state ¥ € (P) with ¥(f(a)) = 1.
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We have shown that P is unital and block-finite. According to Theorem
3.3, P is a Jauch-Piron logic. Hence, by Lemma 3.6, all bottom elements
in P should be central. But we have shown that there are no nonzero central
bottom elements in P—a contradiction. The proof is finished. B
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